As all of CFD, in one form or the other is based on the fundamental governing equations of fluid dynamics i.e. the continuity, momentum and energy equations these are called as the equations speaking physics. They are the mathematical statements of the three physical principles that govern fluid dynamics, hence it becomes very important to derive and discuss these equations. The current blog is motivated to review the very basis of governing equations understanding their physical meaning before actually deriving them.

Understanding the turbulent behaviour of fluids is one of the most fascinating, forbidding & critical problems in all of classical physics. Turbulence is omnipresent, as most of the fluid flows are turbulent in nature right from the microscopic level at interior of biological cells to the macroscopic scales of the geophysical and astrophysical phenomena including planetary interiors, oceans and atmospheres that represent the dominant physics of turbulent fluid flows.

With the growing adoption to modern technology by means of smartphones, personal computers & tablets there has been increased demand for the data centre processing worldwide. For every handheld computing device attached to the cloud, a data center is processing the required information resulting in the growth of data centers and is expected to continue at the rate of 14% per year*. To meet to these challenge the data center designers and operators are struggling to have optimum designs that can conserve energy.

A most common complaint often cited by computational fluid dynamics practitioners is the generation of a good quality computational mesh and is estimated to be costing about 70% of the entire simulation cycle. Though much progress has been made in terms of algorithm accuracy and speed over the last three decades, generating grids step for complex, real world computations still remains the most time consuming and least reliable component of CFD simulation process. Meshless methods thus provide a viable alternative to grid-based flow computation as they are supposed to not require the conventional grid structure and thereby relieving the many issues specifically related to grid generation step. This blog shall provide you an introduction and update about the popular meshless methods available today.

In the earlier blog Combustion in Internal Combustion (IC) Engines we had an introduction about the combustion phenomena taking place in an automotive IC engine. The present article is an effort in continuation to have insights on CFD of combustion in IC engines. As we know the key factors that govern the decision making of any automobile buyer in general are, its mileage, performance, maintenance and tentative life apart from passenger comfort and aesthetics. An engine forms the heart of an automobile that can dictate its performance and life and is solely governed by the combustion pattern inside. The detail analysis of combustion in any engine is one of the most important key factors to confirm its efficient design wherein computational fluid dynamics (CFD) proves to be an efficient tool.

Browse Knowledge Base

Recommended By

Get Instant Updates

Subscribe to get instant updates about CFD courses, projects, blogs, webinars, software tutorials & CFD jobs

Search Knowledge Base

By Keyword

By Author

By Tag